

Grade VII

Lesson: 9

11. How many rational numbers are there between 2 and 4?

24. Which of the following is equivalent to $\frac{4}{5}$ is :										
a) <u>5</u>		c) $\frac{16}{20}$ d) $\frac{15}{25}$								
25. How many rational numbers are there between two rational numbers?										
a) 1 b) 0 c) unlimit ed d) 100										
26. In the standard form of a rational number, the denominator is always a :										
a) 0 b) negative integer										
c) F	c) Posit ive int eger d) 1									
27. To re	duce a r at	ional num	bertoth	e st andar	d f or m we	divide it s	s numer at	or and de	nominat or	
by t	their:									
a) L	.CM	В) HCF		C) produc	ot	d) mult	iple 🧲		
									· · · · · · · · · · · · · · · · · · ·	
1) b	2) c	3) a	4) a	5) a	6) a	7) a	8) b	9) b	10) b	
11) d	12) b	13) c	14) c	15) a	16) d	17) d	18)c	19) d	20) b	
21) a	22) b	23)c	24) c	25) c	26) c	27) b				
	-		II. N	Aultiple of	choice qu	est ions				
1. Which o	f the follo	owing rati	onal numb	ers is pos	itive?		-			
a	- <u>8</u> 7	b	$\frac{19}{-13}$		C. $\frac{-3}{-4}$		d. $\frac{-21}{13}$			
2. Which c	of the foll	owing rati	onal numb	persis neg	gat ive?					
a. –	$\left(\frac{-3}{7}\right)$	b	$\frac{-5}{-8}$		C. $\frac{9}{8}$		d. $\frac{3}{-7}$			
3.Inthes	t andar df	ormofai	rational n	umbers, tl	he commo	n factor o	of numer at	or and		
denomi	nator is	always								
a. 0)	b	. 1		c2		d. 2			
4. The sta	ndard for	m of $-\frac{32}{40}$ i	s							
a. $\frac{-32}{40}$ b. $\frac{-4}{5}$ c. $\frac{4}{-5}$ d. $\frac{32}{-40}$										
5. Which pair shows equivalent rational number?										
a. $\frac{3}{4}, \frac{6}{8}$ b. $\frac{5}{6}, \frac{5}{12}$ c. $\frac{3}{2}, \frac{3}{4}$ d. None of these										
63 can be written in the form of $\frac{p}{a}$ as?										
a	- <u>3</u> -1	b	$-\frac{-3}{0}$		C. $\frac{0}{-3}$		d. $\frac{-3}{1}$			
				3		and a	Create	ed by Pinkz		

- _____ f or m .
- 29. If $\frac{p}{q}$ is a rational numbers, then q cannot be

1) Negative	2) Posit ive	<mark>3)</mark> 219	$4)\frac{-3}{4}$	5) lef t	6) right	7) Less
8) Less	9) Dif f er ent	10) Same	11) $\frac{-2}{3}$	1 <mark>2) -1</mark> 5	13) -1	14) ½
15) 1	16) -36	<mark>17</mark>) 12	18) -1	1 <mark>9)</mark> 0 Zero	20) 1	21) $\frac{9}{49}$
22) 0	23) 0	24) $\frac{5}{2}$	25) $\frac{-1}{1}$	26) b÷ m	27) Positive,	28) Simplest
	0	2	1	C	negat ive	0
30) Zero	al S	onor	ali	on è	Deho	

Fill in the boxes with the correct symbol or

In questions 1 to 19 state, whether the statements are True or False.

- 1. Every natural number is a rational numbers but every rational number need not be a natural number.
- 2. Zero is a rational numbers
- 3. Every integer is a rational number but every rational number need not be an integer.
- 4. Every negative integer is not a negative rational number
- 5. If $\frac{p}{q}$ is a rational number and m is a non-zero integer then,
- 6. If $\frac{p}{q}$ is a rational number and m is a non-zero common divisor of p and q then $\frac{p}{q} = \frac{p \div m}{q \div m}$
- 7. In a rational number denominator always has to be a non-zero integers.
- 8. If $\frac{p}{q}$ is a rational number and m is a non-zero integer then $\frac{p \times m}{q \times m}$ is a rational number not equivalent to $\frac{p}{q}$.
- 9. Sum of two rational numbers is always a rational number.
- 10. All decimal numbers are also rational numbers.
- 11. The quotient of two rational is always a rational number.
- 12. Every fraction is a rational number.
- 13. Two rational with different numbers can never be equal
- 14.8 can be written as a rational number with any integer as denominator
- 15. $\frac{4}{6}$ is equivalent of $\frac{2}{3}$.
- 16. The rational number $\frac{-3}{4}$ lies to the right of zero on the number line.

- 17. The rational numbers $\frac{-12}{-5}$ and $\frac{-7}{17}$ are on the opposite sides of zero on the number line.
- 18. Reciprocal of -1 is -1
- 19. Product of $\frac{3}{7} \times \left(\frac{-7}{4}\right)$ is $\frac{3}{4}$.

1) True	2) True	3) True	4) False	5) True	6) True	7) True	8) False	9) True
10) True	11) False	12) True	13) False	14) False	15) True	16) False	17) True	18) True
19) False						2		

II. True or False

- 1. $\frac{24}{64} \div \frac{6}{16} = \frac{4}{7}$.
- 2. 9 $\frac{3}{4} \div \frac{4}{8} \times \frac{1}{2} = \frac{6}{5}$.
- 3. If $\frac{-6}{7} = \frac{x}{28}$, then the value of x is $\frac{-3}{2}$.
- 4. If $\frac{p}{q}$ is rational number and m is a non-zero common divisor of p and q, then $\frac{p}{q} = \frac{p \div m}{q \div m}$.

1. c	2. c	3. b	4. b

I. Match the columns

	Column A		Column B	
a)	$\frac{a}{b} \div \frac{a}{b}$	i)	$\left \frac{-a}{b}\right $	
b)	$\frac{a}{b} \div \frac{c}{d}$	ii	-1	•
c)	$\frac{a}{b} \div (-1)$	iii		
d)	$\frac{a}{b} \div \frac{-a}{b}$	iv	$\frac{bc}{ad}$	l l
e)	$\frac{a}{b} \div \left(\frac{d}{c}\right)$	verte	$\frac{ad}{bc}$	chool

аў́н

	Column A		Column B
a)	$\frac{2}{6} + \frac{4}{6}$	i)	37 81
b)	$\frac{2}{8} - \frac{1}{4}$	ii	9 32
C)	$4\frac{1}{9}X\frac{1}{9}$		blic
d)	$\frac{7}{21} \div \frac{8}{3} \div \frac{4}{9}$	iv	0

- I. Very Short Answer Questions
- 1. Find x, such that $\frac{-5}{8} = \frac{x}{-32}$

$$\frac{3}{8} = \frac{x}{32}$$

= (-5) (-32) = 8x

$$= x = \frac{5 \times 32}{8} = 20$$

- 2. Divide $\frac{12}{5}$ by $\frac{21}{25}$ $=\frac{12}{5} \times \frac{25}{21}$ $=\frac{12 \times 5}{21}$ $=\frac{4 \times 5}{7} = \frac{20}{7}$.
- 3. If product of two rational numbers is $\frac{-8}{9}$ and one of the number is $\frac{-10}{3}$, find the other. Let other number be x.

$$x = \left(\frac{-10}{3}\right) = \frac{-8}{9}$$
$$x = \frac{8 \times 3}{10 \times 9}$$
$$= \frac{4 \times 1}{5 \times 3} = \frac{4}{5}$$

4. Find x if sum of $\frac{-1}{2}$ and x is 0.

$$x = \frac{1}{2}$$
 Steel Generation School

8

5. What should be added to $\frac{-3}{4}$ to get 0?

$$=\frac{3}{4}$$
.

II. Very Short Answer Questions

- I. Short Answer Questions
- 1. What will be the product of the following:

a)
$$\frac{6}{7} \times \left(-\frac{3}{5}\right)$$

b) $\left(-\frac{11}{4}\right) \times \left(\frac{5}{7}\right)$
c) $\left(-\frac{3}{5}\right) = \frac{6 \times (-3)}{7 \times 5}$
c) $\left(-\frac{11}{4}\right) \times \frac{5}{7} = \frac{(-11)X5}{4 \times 7}$
c) $\left(-\frac{55}{28}\right)$

4. 'a' and 'b' are two different numbers taken from the numbers 1 - 50. What is the largest value that $\frac{a-b}{a+b}$ can have? What is the largest value that $\frac{a+b}{a-b}$ can have? Since, a and be are two different numbers.

Let a = 15 and b = 10 $\therefore \frac{a-b}{a+b} = \frac{15-10}{15+10} = \frac{5}{25} = \frac{1}{5}$ and $\frac{a+b}{a-b} = \frac{15+10}{15-10} = \frac{25}{5} = 5$

So, (a +b) always greater than (a-b) when denominator is less number is greater

then,

 $\left(\frac{a+b}{a-b}\right) > \left(\frac{a-b}{a-b}\right) \,.$

5. Find a rational number exactly half way bet ween:

a) $\frac{-1}{3}$ and $\frac{1}{3}$ b) $\frac{1}{6}$ and $\frac{1}{9}$ a) We have, $\frac{-1}{3}$ and $\frac{1}{3}$ \therefore Half of $\frac{-1}{3}$ and $\frac{1}{3} = \frac{(-1+3)}{3} = \frac{(-1+3)}{2}$ $= \frac{(\frac{9}{3})}{2} = \frac{9}{2} = 0.$ b) We have $\frac{1}{6}$ and $\frac{1}{9}$ LCM of 6 and 9 = 3 x 2 = 18 \therefore Half of $\frac{1}{6}$ and $\frac{1}{9} = \left(\frac{\frac{1}{6} + \frac{1}{9}}{2}\right) = \left(\frac{\frac{3}{18} + \frac{2}{18}}{2}\right)$ $\left[\frac{1}{6} \times \frac{3}{3} = \frac{3}{18}, \frac{1}{9} \times \frac{2}{2} = \frac{2}{18}\right]$ $\left[\frac{(\frac{5}{18})}{2} = \frac{5}{18} \times \frac{1}{2} = \frac{5}{36}$. **State School**

6. Are the rational numbers $\frac{-8}{28}$ and $\frac{32}{-112}$ equivalent ? Give reason.

We have,
$$\frac{-8}{28}$$
 and $\frac{32}{-112}$
8 = 2 x 2 x 2
28 = 2 x 2 x 7

HCF OF 8 and $28 = 2 \times 2 = 4$

2	8	2	28		2	32
2	4	2	14		2	16
2	2	7	7		2	8
			1		2	4
					2	2
32	2 = <mark>2 x 2</mark> >	< 2)x [2]x 2	1	

$$28 = 2 \times 2 \times 2 \times 2 \times 2 \times 7$$

HCF OF 32 and $112 = 2 \times 2 \times 2 \times 2 = 16$

 $\therefore \frac{-8}{28} = \frac{-8 \div 4}{28 \div 4} = \frac{-2}{7}$

On converting the rational number into positive denominator, we get

 $\frac{32}{-112} + \frac{-16}{-16} = \frac{-2}{7}$

So, both rational numbers are equivalent.

7. If 12 shirts of equal size can be prepared from 27 m cloth, what is length of cloth

2

2 56

2 14

7

112

2 28

required for each shirt?

: Length of $\operatorname{clot} h = 27 \text{ m}$

Since, 12 shirts of equal size is to be prepared.

.. Length of cloth required for each shirt

$$= 27 \div 12 \text{ m} = \frac{27}{12} \text{ m}$$

∵ 27 = 3 X 3 X 3

And $12 = 2 \times 2 \times 3$

 \therefore HCF of 27 and 12 = 3

On dividing numerator and denominator by their HCF, we get

$$\frac{27 \div 3}{12 \div 3} = \frac{9}{4} = 2.25 \text{ m}$$

So, for each shirt 2.25 m cloth is required.

3	27	2	12
3	9	2	16
3	3	3	3
0	1	1	

8. From a rope 68m long, pieces of equal size are cut. If length of one piece is 4 $\frac{1}{4}$ m, find the number of such pieces. \therefore Tot al length of rope = 68 m Here, the pieces of equal size are cut. Lengt h of 1 piece = $4\frac{1}{4}m = \frac{4X4+1}{4} = \frac{17}{4}m$ Number of pieces of the rope = $68 \div \frac{17}{4} = 68 \times \frac{4}{17}$ [: reciprocal of $\frac{17}{4} = \frac{4}{17}$] $=\frac{68 \times 4}{17} = 4 \times 4 = 16$ pieces. Thus, t ot al equal lengt h pieces are 16. 9. A body floats $\frac{2}{9}$ of its volume above the surface. What is the ratio of the body submerged volume of its exposed volume ? Re-write it as rational number. Let the total volume = 1; Body floats volume = $\frac{2}{9}$ Body submerged volume = $\frac{1}{1} - \frac{2}{9}$ \therefore LCM of 1 and 9 = 9. On multiplying numerator and denominator by their LCM, we get $\frac{1 \times 9}{1 \times 9} = \frac{9}{9}$ \therefore Body submer ged volume = $\frac{9}{9} - \frac{2}{9} = \frac{7}{9}$ Ratio Body submerged volume : Body floats volume 7 9 2 On multiplying both sides by 9, we get $\frac{7}{9} \times 9: \frac{2}{9} \times 9 = 7:2$ In rational number for $m = \frac{7}{2}$. Next Generation School

II. Short Answer Questions

1. Which is greater in each of the following :

3. Fill in the blanks :

$$\frac{27}{16}$$
 + (...) = $-\frac{15}{8}$

Let the missing number be $\frac{a}{b}$, then

$$\frac{27}{16} \div \left(\frac{a}{b}\right) = \frac{-15}{8}$$
$$= \frac{27}{16} \times \frac{b}{a} = \frac{-15}{8}$$
$$\Longrightarrow \frac{b}{a} = \left(\frac{-15}{8}\right) \div \frac{27}{16}$$
$$\Longrightarrow \frac{b}{a} = \frac{-15}{8} \times \frac{16}{27}$$
$$\Longrightarrow \frac{b}{a} = \frac{-10}{9}$$

 \therefore Number is $\frac{a}{b} = \frac{-9}{10}$.

4. The product of two rational number is $\frac{-8}{9}$. If one of the number is $\frac{-4}{15}$, find the other.

I of roquirod number be

b) Given
$$\frac{-5}{6} + \frac{-3}{11}$$

 \therefore LCM of 6 and 11 = 66
 $\therefore \frac{-5}{6} = \frac{-5 \times 11}{6 \times 11} = \frac{-55}{66}$ and $\frac{-3}{11} = \frac{-3 \times 6}{6 \times 11} = \frac{-18}{66}$
Now, $\frac{-5}{6} + \frac{-3}{11} = \frac{-55}{66} + \frac{-18}{66} = \frac{-55 + (-18)}{66}$
 $= \frac{-55 - 18)}{66} = \frac{-73}{66}$.
6. Find : a) $\frac{7}{48} - \frac{17}{36}$ b) $\frac{5}{63} - (\frac{-6}{21})$ c) $\frac{-6}{13}$
a) $\frac{7}{48} - \frac{17}{36} = \frac{7(3) - 17(4)}{144}$
 $= \frac{21 - 68}{48} = \frac{-47}{144}$
b) $\frac{5}{63} - (\frac{-6}{21}) = \frac{5}{63} + \frac{6}{21}$
 $= \frac{5 - 6(3)}{63} = \frac{5 + 18}{63} = \frac{23}{63}$
c) $\frac{-6}{13} - (\frac{-7}{15}) = \frac{-6}{13} + \frac{7}{15}$
 $= \frac{-6(15) + 7(13)}{195} = \frac{-90 + 91}{63} = \frac{1}{195}$
d) $\frac{-3}{8} - \frac{7}{11} = \frac{-3(11) - 7(8)}{88}$
 $= \frac{-33 - 56}{88} = \frac{-89}{88} = -1\frac{1}{88}$.

III. Short Answer Questions

Write four more rational numbers in the pattern below. 1.

c) $\frac{-6}{13} - \left(\frac{-7}{15}\right)$

d) $\frac{-3}{8} - \frac{7}{11}$

We have pattern in these numbers. So, next four are

 $\frac{(-3)X5}{5X5} = \frac{-15}{25}$ $\frac{(-3)X6}{5X6} = \frac{-18}{30}$ $\frac{(-3)X7}{5X7} = \frac{-21}{35}$ $\frac{(-3)X8}{5X8} = \frac{-24}{40}$

Therefore, required next four rational numbers are

blic

 $\frac{-15}{25}$, $\frac{-18}{30}$, $\frac{-21}{35}$, $\frac{-24}{40}$.

2. Find the sum of $\frac{-8}{19} + \frac{(-2)}{57}$

LCM of 19 and 57 is 57

$$\therefore \frac{-8}{19} = \frac{(-8)x3}{19x3} = \frac{-24}{57}$$

$$\frac{-8}{19} + \frac{(-2)}{57} = \frac{-24}{57} + \frac{(-2)}{57} = \frac{-24+(-2)}{57} = \frac{-26}{57}$$

$$\frac{-8}{19} + \frac{(-2)}{57} = \frac{-26}{57}$$

3. Find the product of $\frac{3}{10}$ x (-9).

We have, $\frac{3}{10} \times (-9) = \frac{3}{10} \times \frac{(-9)}{1} = \frac{3 \times (-9)}{10 \times 1} = \frac{-27}{10} = -2 \frac{7}{10}$.

4. Find the value of $\frac{3}{13} \div \left[\frac{-4}{65}\right]$

The reciprocal of $\frac{-4}{65}$ is $\left[\frac{-65}{4}\right]$

- $\therefore \frac{3}{13} \div \left[\frac{-4}{65}\right] = \frac{3}{13} \times \left[\frac{-65}{4}\right]$ $= \frac{3 \times (-65)}{13 \times 4} = \frac{-195}{52}$ $= \frac{(-195) \div 13}{52 \div 13} = \frac{-15}{4} = -3\frac{3}{4}$ Thus, $\frac{3}{13} \div \left[\frac{-4}{65}\right] = -3\frac{3}{4}$.
- 5. What number should be added to $\frac{-5}{8}$ so that the sum is $\frac{5}{9}$? The number will be obtained by subtracting $\frac{-5}{8}$ from $\frac{5}{9}$

So,
$$\frac{5}{9} - \left[\frac{-5}{8}\right] = \frac{5}{9} + \frac{5}{8} = \frac{5 \times 8 + 5 \times 9}{9 \times 8}$$

 $=\frac{40+45}{75} = \frac{85}{72} = \text{Therefore, the required number is } \frac{85}{72}$

6. The sum of two rational numbers is $\frac{-3}{5}$. If one of them is $\frac{-9}{10}$. Fine the other.

Given,

Sum of two numbers = $\frac{-3}{5}$.

One of the numbers = $\frac{-9}{10}$

The other number = Sum of two numbers - one of the numbers

 $=\frac{-3}{5}-\frac{(-9)}{10}=\frac{-3}{5}+\frac{9}{10}$

LCM of 5 and 10 is $10 = \frac{-3X \, 2+9 \, X \, 1}{10} = \frac{-6+9}{10} = \frac{3}{10}$

Therefore the required number is $=\frac{3}{10}$

7. If
$$\frac{-5}{7} = \frac{X}{28}$$
, find the value of x

Given, $\frac{-5}{7} = \frac{X}{28}$

By cross multiplication, we get

 $(-5) \times 28 = (7 \times x)$

-140 = 7 x

$$x = \frac{-140}{7} = -20$$

: The required value of x is - 20.

I. Long Answer Questions

1. Write four numbers in the following pattern.

 $\frac{-1}{3}, \frac{-2}{6}, \frac{-3}{9}, \frac{-4}{12}, \dots$ Given pattern is $-\frac{1}{3}, -\frac{2}{6}, -\frac{3}{9}, -\frac{4}{12}, \dots$ Her e $-\frac{1}{3} = \frac{(-1)X1}{3X1}$ $-\frac{2}{6} = \frac{(-1)X2}{3X2}$ $-\frac{3}{9} = \frac{(-1)X3}{3X3}$ and $-\frac{4}{12} = \frac{(-1)X4}{3X4}$ Hence next four numbers are $\frac{(-1)\ X\ 5}{3\ X\ 5} = -\ \frac{5}{15}$ $\frac{(-1) X 6}{3 X 6} = -\frac{6}{18}$ $\frac{(-1)\ X\ 7}{3\ X\ 7} = -\ \frac{7}{21}$ $\frac{(-1)\ X\ 8}{3\ X\ 8} = -\ \frac{8}{24}.$ 2. Arrange the rational numbers $\frac{-3}{5}$, $\frac{7}{-10}$, $\frac{-5}{6}$ in ascending order. Sequence is $\frac{-3}{5}$, $\frac{7}{-10}$, $\frac{-5}{6}$ L.C.M. of 5, 10 and 6 = 30 $=\frac{-3}{5}, \frac{7}{-10}, \frac{-5}{6}$ $=\frac{-3 X 6}{5 X 6}, \frac{7 X 3}{-10 X 3}, \frac{-5 X 5}{6 X 5}$ $=\frac{18}{30}, -\frac{21}{30}, -\frac{25}{30}$ (ext Generation School Since $-\frac{25}{30} < -\frac{21}{30} < -\frac{18}{30}$

Hence sequence in ascending order is

 $\frac{-5}{6} < \frac{7}{-10} < \frac{-3}{5}$.

3. Taking $x = \frac{-4}{9}$, $y = \frac{5}{12}$, $z = \frac{7}{18}$, find:

a) the rational number which when added to x gives y.

b) the rational number which subtracted from y gives z.

c) the rational number which when added to z gives x.

- d) the rational number which when multiplied by y to get x.
- a) Let we add A to x then gives y

A + x = y = A +
$$\left(\frac{-4}{9}\right) = \frac{5}{12}$$

A = $\frac{5}{12} - \left(\frac{-4}{9}\right)$

 $=\frac{5}{12}+\frac{4}{9}$

$$=\frac{5 X 3+4 X 4}{36}$$

 $\frac{15+16}{36} = \frac{31}{36}$

b) Let we subtract A from y gives z

y - A = Z =
$$\frac{5}{12} - A = \frac{7}{18}$$

-A = $\frac{7}{18} - \frac{5}{12} = \frac{7 \times 2 - 5 \times 3}{36}$
= $\frac{14 - 15}{36} = \frac{-1}{6}$.
A = $\frac{1}{6}$

c) Let A is added to z gives x

A + Z = X = A +
$$\left(\frac{7}{18}\right) = \frac{-4}{9}$$

A = $\frac{-4}{9} - \frac{7}{18} = \left(\frac{-4 X 2 - 7}{18}\right) = \frac{-8 - 7}{18} = \frac{-15}{18} = \frac{-5}{6}$

[bot h are divided by 3]

d) Let A be multiplied by y to get x

$$= A \times \frac{5}{12} = \frac{-4}{9}$$

$$= A = \frac{-4}{9} \times \frac{12}{5}$$

$$A = \frac{-16}{15}.$$

II. Long Answer Questions

1. Satpal walks $\frac{2}{3}$ km from a place, P, towards East and then from there 1 $\frac{5}{7}$ km towards

West, Where will he be now from P?

Let us denot e the distance travelled towards. East by positive sign. So, the distances towards West would be denoted by negative sign.

Thus, distance of Sat pal from the point Pwould be

 $\frac{2}{3} + \left[-\frac{1}{5} \right] = \frac{2}{3} + \frac{(-12)}{7} = \frac{2 \times 7}{3 \times 7} \cdot \frac{(12) \times 3}{7 \times 3}$ $= \frac{14 - 36}{21} = \frac{-22}{21} = \frac{1}{21} + \frac{1}{21}$

Since it is negative, it means Sat pal is at a distance of $1\frac{1}{21}$ km towards West of P.

2. Divide the sum of $\frac{12}{5}$ and $\frac{21}{25}$ by their difference?

Sum of $\frac{12}{5}$ and $\frac{21}{25} = \frac{12}{5} + \frac{21}{25} = \frac{5(12)+1(21)}{25}$ $= \frac{60+21}{25} = \frac{81}{25}$ Difference of $\frac{12}{5}$ and $\frac{21}{25} = \frac{12}{5} - \frac{21}{25}$ $= \frac{5(12)-21(1)}{25} = \frac{60-21}{25} = \frac{39}{25}$ Now, $\left[\frac{12}{5} + \frac{21}{25}\right] \div \left[\frac{12}{5} - \frac{21}{25}\right] = \left[\frac{81}{25}\right] \div \left[\frac{39}{25}\right]$ $= \frac{81}{25} \times \frac{25}{39} = \frac{27}{13}$.

3. Simplify : $\left[\frac{14}{15} X \left[\frac{-25}{28}\right]\right] + \left[\frac{2}{3} X \frac{6}{7}\right]$

$$\therefore \frac{14}{15} \times \frac{(-25)}{28} = \frac{14}{15} X \frac{25}{28} \times (-1)$$

$$= \frac{1 \times 5 \times (-1)}{3 \times 2} = \frac{-5}{6}$$

$$and_{\frac{2}{3}} \times \frac{6}{7} = \frac{2 \times 2}{1 \times 7} = \frac{4}{7}$$

$$\therefore \left[\frac{14}{15} X \left[\frac{-25}{28} \right] \right] + \left[\frac{2}{3} X \frac{6}{7} \right]$$

$$= \left[\frac{-5}{6} \right] + \left[\frac{4}{7} \right]$$

$$= \frac{(-5) \times 7 + 4 \times 6}{6}$$

[.: LCM OF 6 AND 7 I S 42]

 $=\frac{-35+24}{42}=\frac{-11}{42}.$

Generation School

4. Find the reciprocal of the following

ii. $\left[-5 X \frac{12}{15}\right] - \left[-3 X \frac{2}{9}\right]$ i. $\left[\frac{1}{2}X\frac{1}{4}\right] + \left[\frac{1}{2}X6\right]$ i. $\left[\frac{1}{2}X\frac{1}{4}\right] + \left[\frac{1}{2}X6\right]$ As we know, c.L $\frac{1}{2} X \frac{1}{4} = \frac{1}{8}$ $= and \frac{1}{2} X 6 = 3$ Now $\begin{bmatrix} \frac{1}{2} X \frac{1}{4} \end{bmatrix} + \begin{bmatrix} \frac{1}{2} X 6 \end{bmatrix} = \frac{1}{8} + 3 = \frac{1+8 \times 3}{8} = \frac{25}{8}$ Reciprocal $\left[\frac{25}{8} is \frac{8}{25}\right]$ ii. $\left[-5X\frac{12}{15}\right] - \left[-3X\frac{2}{9}\right]$ As we know $\left[-5X\frac{12}{15}\right] = \frac{-12}{3}$ and $\left[-3X\frac{2}{9}\right] = \frac{-2}{3}$ Now, $\left[-5X\frac{12}{15}\right] - \left[-3X\frac{2}{9}\right] = \frac{-12}{3} - \left[\frac{-2}{3}\right]$ $=\frac{-12}{3}-\left[\frac{-2}{3}\right]$ $=\frac{-12}{3}+\frac{2}{3}=\frac{-10}{3}$ Reciprocal of $\frac{-10}{3}$ is $\frac{-3}{10}$. 5. Taking $x = \frac{-4}{9}$ $y = \frac{5}{12}$ and $x = \frac{7}{18}$ Find : a. Rational number which when multiplies by y to get x **b.** $(x \div y) xz$ School c. x - (y + z)

d. Rational number which when added to z give us x.

a. Rational number which when multiplies by y to get x

ic

Let the rational number be a

From above statement we get,

a X y = x

 \Rightarrow a x $\frac{5}{12} = \frac{-4}{9}$

$$\frac{5a}{12} = \frac{-4}{9}$$

By cross multiplication ; we get

 $5a \times 9 = -4 \times 12$

 $a = \frac{-4 \times 12}{5 \times 9} = \frac{-4 \times 4}{5 \times 3} = \frac{-16}{15}$

 \therefore Rational number we get $=\frac{-16}{15}$

b. $(x \div y) Xz$

Putting the value of x, y, z we get

 $\left(\frac{-4}{9} \div \frac{5}{12}\right) x \left(\frac{7}{8}\right) \Rightarrow \left(\frac{-4}{9} \div \frac{5}{12}\right)$ Reciprocal of $\frac{5}{12}$ is $\frac{12}{5}$ $\therefore \frac{-4}{9} \div \frac{12}{5} = \frac{-4}{3} \times \frac{4}{5} = \frac{-16}{15}$

Now we get , $=\frac{-16}{15} \times \frac{7}{18} = \frac{-8}{15} \times \frac{7}{9} = \frac{-56}{135}$

c. x −(y +z)

Putting two value of x, y and z we get

$$\frac{-4}{9} = \left[\frac{5}{12} + \frac{7}{18} \right]$$

Solving $\frac{5}{12} + \frac{7}{18}$ we get, = $\frac{15+14}{36} = \frac{7}{18}$ we get [: LCM OF 12 AND 18 IS 36]

=Now subtracting $\frac{29}{36}$ and $\frac{-4}{9}$ we get,

$$\frac{-4}{9} - \frac{29}{36} = \frac{-16 - 29}{36} = \frac{-45}{36} = \frac{-5}{4}$$

d. Let the rational number be a from above statement we get,

 \Rightarrow a + z = x

Putting one value of z and x

School

$$= a + \frac{7}{18} = \frac{-4}{9}$$
$$a = \frac{-4}{9} - \frac{7}{18}$$
$$a = \frac{-4 \times 2 - 7}{18} = \frac{-8 - 7}{18} = \frac{-15}{18} = \frac{-5}{6}$$

: The required rational number is $\frac{-5}{6}$.

Value Based Questions

1. a) Arrange the following rational numbers in ascending order ;

 $\frac{2}{5}, \frac{7}{10}, \frac{8}{15}, \frac{13}{30}.$

(b)Which mathematical concept is used in this problem?

- (c) What is its value?
 - a) Sequence $\frac{2}{5}, \frac{7}{10}, \frac{8}{15}, \frac{13}{30}$

L.C.M. of 5, 10, 15, 30 = 30

```
Sequence be \frac{2 X 6}{5 X 6}, \frac{7 X 3}{10 X 3}, \frac{8 X 2}{15 X 2}, \frac{13}{30}
```

Or $\frac{12}{30}$, $\frac{21}{30}$, $\frac{16}{30}$, $\frac{13}{30}$

Its ascending order is

 $\frac{12}{30} < \frac{13}{30} < \frac{16}{30} < \frac{21}{30}$ $\frac{2}{5} < \frac{13}{30} < \frac{8}{15} < \frac{7}{10}$

b) L.C.M. and to find ascending or der.

c) In a class, the students should stand in ascending or der of height.

Next Generation School

- 2. a) List six rational numbers between 1 and 0
 - b) Which mathematical concept is used in this problem?
 - c) What is its value?
 - a) We have
 - $-1 = \frac{7}{7} \text{ and } 0 = \frac{0}{7}$ $-\frac{7}{7} < -\frac{6}{7} < \frac{-5}{7} < -\frac{4}{7} < -\frac{3}{7} < -\frac{2}{7} < -\frac{1}{7} < \frac{0}{7}$ $-1 < -\frac{6}{7} < \frac{-5}{7} < -\frac{4}{7} < -\frac{3}{7} < -\frac{2}{7} < -\frac{1}{7} < 0$

Hence six rational numbers between -1 and 0 are

 $-\frac{6}{7}, \frac{-5}{7}, -\frac{4}{7}, -\frac{3}{7}, -\frac{2}{7}, -\frac{1}{7}$

- b) To find more rational numbers between two rational numbers.
- c) Value : We should give space to others.

HOTS (Higher order thinking skills)

1. Write a rational number in which the numerator is less than '-7 x 11' and the denominator is greater than '12 + 4 '.

Pational number in which numerator is less than '-7 x 11' i.e., -77 and, denominator greater than '12 + 4 '. i.e. 16 are many like $\frac{-78}{17}$, $\frac{-79}{18}$...and so on. **2.** If $\mathbf{x} = \frac{1}{10}$ and $\mathbf{y} = \frac{-3}{8}$, then evaluate $\mathbf{x} + \mathbf{y}$, $\mathbf{x} - \mathbf{y}$, \mathbf{x} X y and $\mathbf{x} \neq \mathbf{y}$. Given $\mathbf{x} = \frac{1}{10}$ and $\mathbf{y} = \frac{-3}{8}$ $\mathbf{x} + \mathbf{y} = \frac{1}{10} + \left(\frac{-3}{8}\right) = \frac{4 + (-15)}{40} = \frac{4 - 15}{40} = \frac{-11}{40}$ $\mathbf{x} - \mathbf{y} = \frac{1}{10} + \left(\frac{-3}{8}\right) = \frac{4 - (-15)}{40} = \frac{19}{40}$ $\mathbf{x} + \mathbf{y} = \frac{1}{10} + \left(\frac{-3}{8}\right) = \frac{1}{10} \mathbf{x} - \frac{3}{8} = \frac{-3}{80}$ $\mathbf{x} \neq \mathbf{y} = \frac{1}{10} + \left(\frac{-3}{8}\right)$ $= \frac{1}{10} - \frac{-8}{3} = \frac{-4}{15}$.

3. If p = m x t and q = n x t then $\frac{p}{q} =$

Given , p = m x t and q = n x t

Putting value of p and q we get.

 $\therefore \quad \frac{p}{q} = \frac{m \, x \, t}{n \, x \, t} = \frac{m}{n}.$

4. What's the error? Chhaya simplified a rational number in this manner $\frac{-25}{-30} = \frac{-5}{-6}$. What

blin

error did the student make?

She simplified rational number $\frac{-25}{-30} = \frac{-5}{-6}$ which is wrong as she divided numerator by 5 and

denominator by -5. As the correct answer should be.

 $=\frac{5}{6}\left(\frac{-25 \div -5}{-30 \div -5}\right).$

Next Generation School

